A SERVICE OF

logo

90-0115-00
10/97 Fltman.pm65
BATTERIES
To achieve 50% cycling you should
calculate your Amp-hour consumption
between charging cycles and use a battery
bank with twice that capacity.
To calculate Amp-hour consumption first
look at the rating plate on your AC appli-
ance or tools. Each appliance or tool will be
rated in either AC Amps or AC watts or AC
VA (Volts-Amps) apparent power. Use one
of the following formulas to calculate the DC
Amp-hour draw for a 12 Volt system:
(AC Amps x 10) x 1.1 x hours of
operation = DC Amp-hours
(AC watts/12) x 1.1 x hours of operation
= DC Amp-hours
(AC VA/12) x 1.1 x hours of operation =
DC Amp-hours
In all formulas, 1.1 is the factor for
inverter efficiency.
Calculate the above for every AC
appliance or tool you intend to use on your
inverter. This will give you the total number
of Amp-hours used between recharges.
Size your battery bank using this number as
a guideline. A good rule to follow is to size
the battery bank about 2 times larger than
your total Amp-hour load requirement. Plan
on recharging when 50% discharged.
Watts
On-Board Computers
Quartz Halogen Flood
0.2 HP Bench Grinder
Hammer Drill
3/8" Electric Drill Motor
Sawzall
0.5 HP Bench Grinder
1.0 HP Tile Saw
0.5 HP Skil
®
Saw
2.0 HP Radial Arm Saw
2.5 HP Chain Saw
Hand Blower/Vacuum
Quartz Halogen Flood
11 gal. Air Compressor
Chain Saw
20 gal. Air Compressor
10" Table Saw
10" Miter Saw
Planer
Coring System
Loads
200
300
300
500
500
500
750
800
1200
1200
1200
1450
1500
1600
1700
1800
1800
1800
1800
2000
Typical PowerConsumption
Many electric motors have momentary
starting requirements well above their op-
erational rating. Start up watts are listed
where appropriate. Individual styles and
brands of appliances may vary.
15