Lincoln Electric F355I Welding System User Manual


 
B-5
OPERATION
B-5
The Peak Current, Background Current, and
Frequency are identical for the high energy and low
energy pulses. In addition to cooling the weld down,
the major effect of the low energy pulses is that they
form a weld ripple. Since they occur at very regular
time intervals, the weld bead obtained is very uniform
with a very consistent ripple pattern. In fact, the bead
has its best appearance if no oscillation of the welding
gun ("whipping") is used.(See Figure B.5)
When Arc Control is used in the Pulse on Pulse
modes, it does the same things it does in the other
pulsed modes: decreasing the Arc Control decreases
the droplet transfer and weld deposition rate.
Increasing the Arc Control increases the droplet trans-
fer and weld deposition rate. Since Arc Control varies
weld droplet transfer rate, the Arc Control can be used
to vary the ripple spacing in the weld bead.
POWER MODE
The Power Mode process was developed by
Lincoln to maintain a stable and smooth arc at low
procedure settings which are needed to weld thin
metal without pop-outs or burning-through. For alu-
minum welding, it provides excellent control and the
ability to maintain constant arc length. This results in
improved welding performance in two primary types of
applications.
Short Arc MIG at low procedure settings.
Aluminum MIG welding.
Power Mode is a method of high speed regulation
of the output power whenever an arc is established. It
provides a fast response to changes in the arc. The
higher the Power Mode Setting, the longer the arc. If a
welding procedure is not established, the best way to
determine the Power Mode Setting is by experimenta-
tion until the desired output result is established.
In the Power Mode two variables need to be set:
Wire Feed Speed
Power Mode Trim
Setting up a Power Mode procedure is similar to set-
ting a CV MIG procedure. Select a shielding gas
appropriate for a short arc process.
For steel, use 75/25 Ar/CO
2
shield gas.
For stainless, select a Helium blend Tri-Mix.
For aluminum, use 100% Ar.
Start by setting the wire feed speed based upon mate-
rial thickness and appropriate travel speed. Then
adjust the Volts/Trim knob as follows:
For steel, listen for the traditional frying egg
sound of a good short-arc MIG procedure to know
you have the process set correctly.
For aluminum, simply adjust the Volts/Trim knob
until the desired arc length is obtained.
Note the Volts/Trim display is simply a relative number
and DOES NOT correspond to voltage.
Some procedure recommendations appear in Table
B.1.
POWER WAVE F355i (CE)
FIGURE B.5
Aluminum 4043 Aluminum 5356 Mild Steel Mild Steel Mild Steel Mild Steel Mild Steel Mild Steel Stainless Steel Stainless Steel
E4043 E5356 L56 L56 L56 L56 L56 L56 E308L E308L
0.035 0.035 0.025 0.025 0.030 0.030 0.035 0.035 0.030 0.035
100% Ar. 100% Ar. 100% CO
2
75/25 Ar/CO
2
100% CO
2
75/25 Ar/CO
2
100% CO
2
75/25 Ar/CO
2
Tri-mix Tri-mix
22 ga.
Not Recommended
100 / 0.8
Not Recommended
90 / 1.0
20 ga. 120 / 1.0 120 / 1.0 100 / 0.7 100 /1.0 80 / 1.5 50 / 0.5
18 ga. 140 / 1.7 140 / 1.5 110 / 1.5 110 / 1.5 100 / 2.5 100 / 2.5 110 / 2.0 110 / 2.0
16 ga. 190 / 2.0 190 / 2.0 125 / 2.0 125 / 2.0 125 / 3.0 125 / 3.0 140 / 2.5 130 / 2.7
14 ga. 400 / 2.0 400 / 2.5 260 / 3.0 260 / 3.0 160 / 2.3 160 / 2.3 160 / 3.8 160 / 3.5 210 / 3.0 190 / 3.5
12 ga. 330 / 5.0 330 / 4.5 230 / 3.5 230 / 3.5 200 / 5.0 200 / 4.5 270 / 5.0 230 / 6.0
10 ga. 500 / 7.0 500 / 7.0 300 / 6.0 300 / 6.0 240 / 6.5 240 / 7.0 325 / 6.5 300 / 7.0
3/16 570 / 9.0 600 / 7.8 400 / 7.5 400 / 7.0
1/4 700 / 9.1 700 / 8.5
MATERIAL THICKNESS
WFS / POWER MODE SETTING
COMMENTS
Not
Recommended
below 400
WFS
MATERIAL
WIRE
WIRE SIZE
GAS
Not
Recommended
below 400
WFS
Recommended Welding Procedures for Power Mode - Table B.1