PARAMETERS
122
4) Reverse action
Increases the manipulated variable (output frequency) if deviation X = (set point - process value) is
positive, and decreases the manipulated variable if deviation is negative.
X>0
X<0
+
-
Process value
Set point
[Heating]
Feedback signal
(Process value)
Cold
→
up
Hot
→
down
Deviation
Set point
5) Forward action
Increases the manipulated variable (output frequency) if deviation X = (set point - process value) is
negative, and decreases the manipulated variable if deviation is positive.
X>0
X<0
+
-
Set point
Too cold
→
down
Hot
→
up
Set point
[Cooling]
Feedback signal
(Process value)
Process value
Deviation
Relationships between deviation and manipulated variable (output frequency)
Deviation
Positive Negative
Reverse action
&'
Forward action
'&
(
3
)
Wiring example
•
Sink logic
•
Pr. 128 = 20
•
Pr. 183 = 14
•
Pr. 192 = 16
•
Pr. 193 = 14
•
Pr. 194 = 15
NFB
AC1
φ
200/220V 50/60Hz
R
〈
L
1
〉
S
〈
L
2
〉
T
〈
L
3
〉
STF
STR
RT(Note 3)
SD
10
2
5
1
4
U
V
W
(Note 2)
FU
OL
SE
(Process values) 4 to
20mADC
IM
P
-++ +-
(OUT) (24V)
IPF
(Note 1)
Power supply
Forward rotation
Reverse rotation
PID control selection
Setting potentiometer
(Set point setting)
Inverter
Motor Pump
Upper limit
Lower limit
Forward
rotation output
Reverse
rotation output
Output signal common
For 2-wire
type
Detector
For 3-wire
type
0 24V
DC
power
supply
(COM)
Note: 1. The power supply must be selected in accordance with the power specifications of the detector
used.
2. The output signal terminals used depends on the Pr. 191 to Pr. 194 settings.
3. The input signal terminals used depends on the Pr. 180 to Pr. 186 settings.